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1. Introduction. If a feedback system is described by a system

of linear differential equations with constant coefficients, there are
a great many techniques for determining whether or not the system is
stable [1], [3], [6]. 1If the coefficients are dependent on time, then
stability can be determined by comparing the system to one with constant
coefficients [5]. 1If the system can only be described by nonlinear
equations, stability may be determined by various approximations,

describing functions or by techniques fitting certain special situations.

In some of these cases valid mathematical procf of the results is lacking.
It is the aim of this paper to present two general stability

theorems, with proofs, which cover a great many situations and which,

even in the linear case with constant coefficients, gives useable new

results.

2. Existence;,Uniqueness and Stability. We will present the

following theorems in a rather general setting, then show the appli-

cations.

Let X denote a Banach space with norm denoted by ||- ||. Let

F and G be operators on X.
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Definition. An operator F is said to be bounded if there exists a

number K such that ||Fx|| K ||x|| for all x in X.

A

The smallest of all such numbers K is called the norm of the
operator. All such numbers K are bounds for F. 1In what foliows
only bounds will be needed. The norm itself will not be necessary.

It is known that if FG 1is a composite operator, F is bounded by K,
G 1is bounded by L, then FG is bounded by KL.

Defipition. An operator F is said to satisfy a Lipschitz condition
———— —— 3

if there exists a number K such that ||Fx - Fy|| <K [|x - y]|
for all x and y in X

We are now ready to consider the feedback system 8 illustrated
by figure 1. £ is the '"forcing function" or '"input", e is the
"error'", r is the 'response" or ‘'output". F and G are operators
on X.

Mathematically & can be described by the following equations.

f-G@) = e, F(e) = 1 ,
or by
F(f - G(r)) = r.
f e F F(e) = r
G(r) G 'y

Figure 1. The feedback system J.
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Theorem 1. f F and G satisfy a Lipschitz condition with constants
e

K and L respectively and KL < 1, then F({(f - G(r)) = r has a
upique solution r in X. See [7

Proof. We develop an iterative procedure to give a sequence of

elements in X which converge to r. Let

r, = F(f),

t, = F(f - G(rl)),
and in general

r = F(g-G(r ).

ey eIl = HlFGE - e ) - 76 - ce ]I,
< x ||rf - G(rnnl)] - [f - G(rn-z)]ll’
=« lee ) - e Pl
s Bl -l

We see by induction that
ro-r o< G [E@]]

which approaches zero as n — o since XL < 1. Since X is complete,

the Cauchy sequence {r } converges to an element r in X. Further
n

||t - F(£ - ce)]] [z = x +F( -G 1)) - EE - 6@

HA

e =zl +xe (1 - o]l = o



So
r = F(f - G(r)).

If r and r' are both solutions then

[z - "] ¢ & [le-<"|] < [le-2']]

. . . . ’
which is a contradiction unless r =r

As with ordinary differential equations this method of succes-
sive approximations gives a procedure for calculating r as well as
an estimate of the error involved.

It is also important to note that this theorem guarantees
uniqueness only in X. It is entirely possible to have other solutions

not in X and in so doing destroy ''stability".

Theorem 2. If F and G are bounded respectively by K and L,

KL <1 and F(f - G(r)) = r has a solution r in X, then
K
Hell ¢ 7% el
See |7
Proof.

Lo}
L]

[|e¢e - e,

< K l[[£ - e=n ],
< K ||£]] + x |lem ],
K ||£]] + & [[]].

1A

Thus

=]l T2 - x] < & [[£]]

and the result follows.
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Corollary. If F and G satisfy a Lipschitz condition with constants
K and L respectively, KL <1 and F(o) = 0, G(o) = 0, then
F(f - G(r)) = r bas a unique sclution r in X, and
K
Hell < 7= |l
(See [7]).

Proof. Since F(o) = 0, the Lipschitz condition

[IFx - Fy|| < X[|x-y]|

with y = 0 shows that K is a bound for ¥. Similarly L 1is a
bound for G. The results follow from Theorems 1 and 2.

These theorems are valid in any Banach space X. Those most
commonly considered are the spaces LP, 1

p <®, C, the space of

A
A

bounded continuous functions, and B the space of bounded functions.
(See [4]). 1In practical applications the functions in these spaces are
functions of time, which is permitted to vary from O tc o. If
negative times are considered the functions are usually to be zero
for t < 0.

An important concept associated with feedback systems is the
concept of stability. There are many ways of defining stability. The

one following is a convenient choice.

Definition. Ihe system & is said to be stable if for all forcing

functions f i X, the response r 1is always an element of X.

It is entirely possible for £ to be in X with r not. Such
systems are unstable.

Let X(0,») be one of the Banach spaces LP(O,m), l<p<e, C(0,»)
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or B(0,») with norm ll . ll. For any N > 0 we denote the norm of

X(0,N) by || - ||Nﬂ We then have the following

Stability Theorem 1. Let f be in X(0,s) and let r be in X(O,N)

for all N > 0. Suppose for all f and g in X(O,N) for all N> O,

Fg, Fh, Gg, and Gh are defined and satisfy

“Fg = Fh” N

nA

K |lg-nll

|log - onll

nA

Llle - nl|

with KL < 1. Then r is in X(0,») and is identical with that of

theorem 1.

The proof is identical with the uniqueness part of that of theorem 1.

Stability Theorem 2. Let f, be in X(0,»), and let r be in X(O,N)

for all N> 0. Suppose for all g in X(O,N) for all N> 0, Fg

and Gg are defined and satisfy

A

lFelly < xllslly »

legl [

nA

el »

with KL < 1.

Then r is in X(0,») and

‘ K
Hell < €11
1 - KL

Proof. We have

F(f - G(xr)) = r.

Thus ||r||N

uA

< lle - ewlly

A



and

el < wa -l [l -

Letting N - o completes the proof.
We finally remark that these theorems can be generalized to

multiloop systems with similar results.

3. Applications

Inverse Differential Operators. The most commonly encountered

feedback systems are usually expressed in terms of linear differential
equations with constant coefficients. 1In this case the operators F
and G are expressed as inverse differential operaters, F = fl(D)/fz(D)j

G

gl(D)/gz(D)9 where fl’ f2’ 8, and g, are polynomials in

D = deg f, < deg f2’ deg g, < deg 8,- These operators are uniquely

4

dat’ 1

defined by requiring that Ff(0) and Gf(0) be zero along with an
appropriate number of derivatives as long as f(t) is a suitable function.
Another more suitable representation of F and G is by the use

of one sided Green's functions [5]. It is known that there exist unique

functions @ (t) and T(t) so that

t t
FE() = [ 0 (c- 1) £()dr and  GE(e) = [ re - nemar .
O (o]

Using this last representation, if all of the zeros of fz(z) and

g2(z) lie in the left half plane it can be shown that when X is Ll,

L2, Lw, B or C, the norms of F and G are Iw |¢(t)|dt and
o
(e+]
J |F(t)[dt respectively.
o
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As an example let F = -1')—}_—3’, a >0, Then if f is suitable,

t

FE(t) = J

(o}

e ~2(t-w) f(u)du. The norm of F is a !l in Ll, LZ:

o<}

L, B or C.

If F o= — . L .. L then [a,,a a ]_1
Dta; D+a, DHa 1°72°° " "*%n

is a bound for ¥ in 1L, L , L, B or C.

As a corollary to the preceeding discussion we have the following.

Theorem. Let X = LleszwiB,C, Let 83 be a simple feedback
system with F = K/(D+a1) ce (D+an), a, >0, G=1, Then 3 is stable
if |K| < aa,...a .

If we consider the feedback system where F = B%;’ G =1 and

determine stability by any other method, we find that the system is
stable provided |K| < a and Possibly unstable if |K| > a. Thus the
result is the 'best possible". Actually this system is stable for
K > -a and unstable otherwise.

Similar results may be found for linear differential systems with
variable coefficients. In this case the functions @ and T are

functions of two variables t and T.

t t
FE(t) = X @, T)YE(T)dT, and GEf(t) = J T(t,7)E(T)d7. (See [5]).
o )

Time Lags. A time lag operator LT defined by LTf(t) = £(t-T1)
can be represented by e-TD. It has norm 1 in all those Banach spaces
mentioned. The results of the previous section may be restated with

time lags with no change in the results.
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Certain Nonlinear Operators. There are a great many nonlinear

operators such as saturation, dead zone, hysteresis, backlash which
frequently occur alone or in any possible combination. If these nen-
linear elements are considered separately and a graph of output versus
input is made, there usually is a point on the graph so that a line
joining it to the origin has maximum slope K. 1t is easy to sez that
K is a bound for that operator. (See [3]).

We note in passing that the '"describing functions" used to describe

these phenomena have K as a maximum value.
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